La **terminologie** est la base de travail d'une discipline. Comment prétendre mettre en œuvre une discipline, quelle qu'elle soit, sans en connaître sa terminologie spécifique ?

Cette terminologie spécifique, qui doit être commune, permet de communiquer entre pairs malgré la barrière de la langue parlée.

Ainsi, en **Morpho**, comme dans toute autre discipline, comment peut-on envisager une revue des analyses menées par un autre expert, si les termes employés ne sont pas les mêmes pour deux collègues, ou s'ils ne sont pas définis de la même façon ?

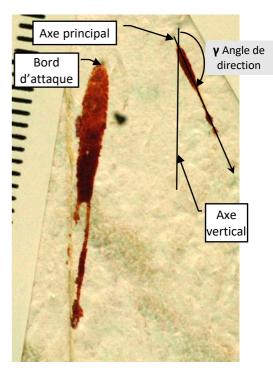
La terminologie est donc essentielle pour notre travail et pour nos échanges. C'est pour cela que le groupe SWGSTAIN a proposé, en 2008, une terminologie anglo-saxonne¹ aujourd'hui reconnue comme la norme². Ce travail auquel j'ai eu le privilège de participer est le résultat de trois ans de discussions sur chacun des 800 termes utilisés alors aux États-Unis, et pour lesquels existaient 255 définitions.

La terminologie française a fait l'objet d'une première publication³. Comme le préambule de cette publication l'indique, son but était de créer un groupe de représentants des principaux pays francophones œuvrant en morphoanalyse de traces de sang, afin d'établir une terminologie commune à la France, à la Belgique, à la Suisse francophone et au Québec. Depuis la terminologie francophone a évolué⁴ pour reprendre la totalité des termes anglophones et d'autres termes spécifiques aux techniciens et experts francophones. Ainsi le site IABPA propose dans ses pages internationales, une table reliant la terminologie anglosaxonne de référence et la terminologie francophone⁵.

1. Angle de direction (γ)

Angle délimité par la trajectoire finale d'une goutte et une ligne de référence définie sur la surface étudiée.

2. Angle d'impact (α)


Angle aigu délimité par la trajectoire finale d'une goutte et la surface étudiée.

3. Axe principal

Axe d'une projection passant par le point médian du bord d'attaque et le centre de la plus grande largeur de la projection.

4. Bord d'attaque

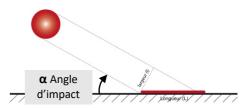
Extrémité d'une projection ayant le rayon de courbure le plus important. Elle correspond au point d'impact initial de la goutte sur la surface étudiée.

¹ http://www.swgstain.org/resources

² http://www.iabpa.org/bpa-resource-links

³ Ph. Esperança, "French Bloodstain Pattern Analysis Terminology»", Canadian Society Forensic Sciences Journal, 42(1), 2009, pp.: 81-88

⁴ http://www.iabpa.org/french


⁵ http://www.iabpa.org/french

5. Bulle

Présence ou vestige d'air dans une trace de sang.

6. Caractéristiques morphologiques

Spécificités du modèle de trace de sang permettant son identification.

7. Direction

Sens de déplacement de la goutte indiqué par la forme de la trace de sang résultante.

8. Effet de vague

Phénomène d'ondulation du sang au moment de l'impact de la goutte sur la surface étudiée. Il peut être à l'origine d'une trace satellite.

9. Goutte

Sphéroïde de sang en déplacement dans l'espace.

10.Mécanismes impactants

Ensemble des modèles de traces résultant de l'application d'une force externe sur la source de sang.

11. Mécanismes projetants

Ensemble des modèles de traces résultant de l'action d'une force liée au mouvement d'un élément ensanglanté.

Leur existence nécessite un lien étroit entre la vitesse du mouvement et la quantité de sang présente sur le support.

Rappelons-nous que pour la création d'une goutte il faut rupture des forces de cohésion donc, cela nécessite que la force générée par la vitesse du déplacement soit suffisante pour les casser.

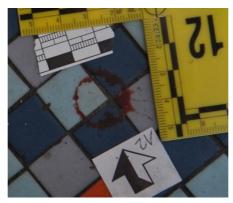
12.Mécanismes transférants

Ces mécanismes décrivent l'ensemble des modèles de traces dont la création résulte d'un transfert de sang d'une surface sur une autre surface dont l'une est la surface étudiée.

13. Modèle de trace de sang

Trace ou ensemble de traces de sang dont la forme, la taille et la distribution indiquent leur mécanisme de création.

14. Surface étudiée

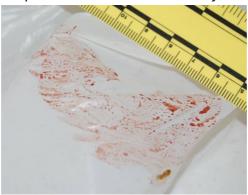

Support sur lequel se trouve la trace de sang observée.

15. Source de sang

Quantité de sang disponible à l'origine des traces étudiées.

16.Squelette

Résultat d'une altération, suite à laquelle il ne reste que le contour de la trace de sang préexistante.



	Forme	Taille	Distribution	Dispersion	Divers
ES					Possible pour tous
ÈRES					les modèles de
CRIT	Contour net	Sans objet	Sans objet	Sans objet	traces de sang mais
5					plus fréquent pour
					les traces passives

17.Trace altérée

Trace de sang dont la morphologie montre que ses caractéristiques initiales ont été modifiées.

Ce modèle de trace désigne les traces dont certaines caractéristiques morphologiques ont disparu mais celles restant permettent encore son identification formelle.

S	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRES	· ·	rrespondre à tous le morphologique pern		•	Elle n'indique qu'une ive.

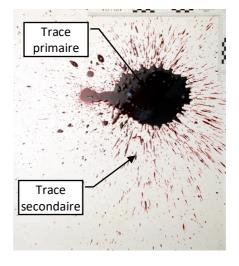
18. Trace de sang

Dépôt de sang sur la surface étudiée.

19. Trace non identifiable

Trace de sang dont les caractéristiques morphologiques ne permettent pas son identification.

Ce modèle regroupe toutes les traces dont l'altération est telle qu'aucune identification formelle n'est désormais possible.


S	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRES	Cette trace peut co critères morphologi				Elle indique que les objective.

20.Trace primaire (= trace mère)

Trace de sang d'où sont issues des traces satellites.

21.Trace secondaire (= trace satellite)

Traces de sang secondaires associées à une trace mère.

22.Trace séquencée

Modèle de trace résultant de la répartition du modèle de trace sur différentes surfaces cibles placées sur différents plans.

Sous ce terme se regroupent, tous les modèles de traces disposés sur plusieurs supports. Leur visualisation demande une vision tri dimensionnelle d'un environnement dans lequel aucune modification n'a été apportée.

Lorsque l'un des supports est un habit, ce modèle permet de repositionner dans son environnement le porteur de ce vêtement.

Ne répondant pas à un mécanisme, ce modèle de trace est une donnée supplémentaire d'un modèle identifiable (ex. Projection par rejet en trace séquencée).

S	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRES	Contour net	•	ères morphologi		e traces de sang. Elle s ne permettent plus

23.Zone de convergence

Représentation en deux dimensions de la zone d'origine des projections. Cette aire contient les intersections des grands axes des projections sur la surface étudiée.

24.Zone d'origine

Détermination en trois dimensions de la localisation de la source de sang à l'origine des projections.

La morphoanalyse des traces de sang est l'examen des formes, taille, distribution et dispersion des traces de sang afin de pouvoir donner une interprétation des événements qui sont à leur origine.

Le premier rôle du Morphoanalyste est donc l'examen des **critères morphologiques** cités cidessus. C'est pourquoi, il me semble indispensable qu'existe un recueil de l'ensemble des modèles de traces de sang identifié par notre communauté. Il permet également de voir la variété de formes qui peut correspondre à un modèle de traces de sang.

Un tel atlas permet de vérifier au travers des paramètres déterminés par la description, si la trace étudiée correspond bien au modèle identifié. Il est la référence comme le sont les "Types" en biologie. Il est également la base à une **identification objective**, ne prenant en compte que les paramètres morphologiques visibles de la trace étudiée.

Chaque trace doit être décrite rigoureusement. Il est alors possible d'en extraire des **critères spécifiques** permettant d'identifier chaque modèle par rapport aux autres, de le nommer et de lui associer le mécanisme l'ayant provoqué.

Nous possédons alors une carte d'identification morphologique pour chaque modèle de trace.

Les modèles de traces de sang sont tous définis par leur mécanisme de création. Cela permet de faire le lien entre les critères d'identification du modèle identifié et l'analyse qui en sera faite par la suite au travers du mécanisme qui a provoqué son existence. Il est alors aisé de comprendre l'importance de chacun de ces termes et d'utiliser le bon terme pour chaque trace étudiée.

Cette association trace étudiée/trace identifiée (modèle de traces de sang) se réalise par le biais de l'identification qui, pour être la plus objective possible, se base sur des caractéristiques morphologiques spécifiques permettant d'identifier la trace.

Au moment de notre intervention, ces modèles de traces sont le plus souvent altérés par différents facteurs :

- L'altération de la trace lors des séquences de faits et/ou pendant le déplacement, volontaire ou non, de la victime. D'autres modèles de traces peuvent s'ajouter qui seront essentiellement des transferts.
- <u>Le recouvrement</u> (ou overlapping), où différents modèles de traces de sang interagissent en se recouvrant partiellement. Cela rend difficile leur identification.
- <u>Le temps écoulé</u> entre les faits et notre intervention provoquera tout d'abord la formation du caillot sanguin avec apparition de la trace de sérum. Une déshydratation suivra dans un délai, fonction des facteurs extérieurs.

 Ensuite la trace se désagrège très facilement et un mouvement d'air est suffisant.
- Ensuite la trace se desagrège très rachement et un mouvement d'air est sumsant.
- Au cours des constatations, la flaque sera systématiquement altérée lorsque la victime sera retrouvée sur le même site. L'examen du corps sur site provoque des manipulations de celui-ci qui, non seulement, peuvent créer des traces, mais en altérer d'autres. La levée de corps demande la prise en mains de la victime et donc des mouvements de celle-ci, le plus souvent au contact de la surface cible.

1. Accumulation

Quantité de sang liquide sur une surface non poreuse ou poreuse saturée.

	Forme	Taille	Distribution	Dispersion	Divers
ES					Altérations
ÈRES	Contour régulier	Liée au volume			fréquentes suite à
RIT	lié à la surface étudiée	de sang présent	Sans objet	Sans objet	d'autres actions.
C					Surface étudiée
					non poreuse


2. Altération glissée

Trace de sang résultant du mouvement d'un élément dans une trace de sang humide préexistante sur la surface étudiée.

Ce modèle de trace de sang désigne le contact en mouvement d'un élément ensanglanté ou non avec la surface étudiée.

La reconnaissance de ce modèle de trace n'est pas aisée car il nécessite que des caractéristiques de la trace préexistante soient encore présentes.

De la même façon que pour le transfert par ripage, il est possible de déterminer le sens de déplacement et de donner des informations morphologiques de la surface venant altérer la trace préexistante.

			Forme	Taille	Distribution	Dispersion	Divers
TÈRES	TÈRES	Trace préexistante	Sans objet	Sans objet	Disposition latérale	Sans objet	//
	CRIT	Autre	Contour régulier, Striation interne	Lié à la quantité de sang disponible	Sans objet	Sans objet	//

3. Altération par contact

Trace de sang résultant de l'apposition d'un élément dans une trace de sang humide préexistante sur la surface étudiée.

Ce mécanisme ne sera pas visible si le sang est liquide.

	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRES	Contour marqué, Forme spécifique	Fonction de la surface source	Sans objet	Sans objet	Sang concentré sur le contour, et moindre à absent dans la trace

4. Altération par dilution

Altération caractérisée par le mélange de sang avec un autre liquide.

(0	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRES	Contour diffus	Fonction de la surface source	Sans objet	Sans objet	Sang concentré sur le contour, et moindre à absent dans la trace

5. Arrêt d'éjection

Ensemble de projections résultant de l'arrêt brutal du mouvement d'un élément ensanglanté.

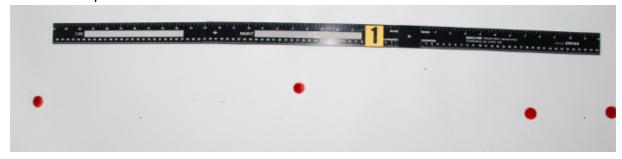
S	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRE	Traces ovoïdes	<3mm	Cône large	Sans objet	Souvent proche d'une ligne de projection (modèle d'éjection)

6. Caillot sanguin

Amas gélatineux résultant de la mise en œuvre des mécanismes de coagulation du sang.

L'action de ces facteurs actifs reste en partie liée à des facteurs environnementaux comme la nature du substrat, la température, le volume de sang présent et l'humidité. Ces mécanismes conduisent à une rétractation de la partie solide du sang, provoquant sa séparation de la partie liquide (plasma devenu sérum).

Trace de sérum

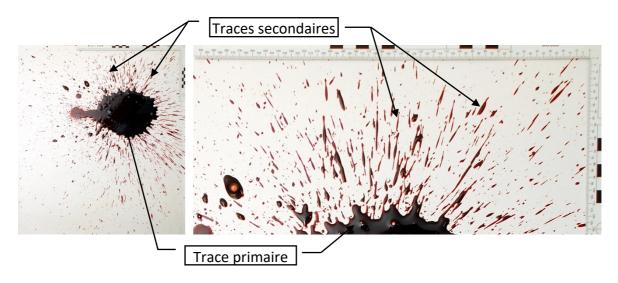


Caillot sanguin

ÈRES	Forme	Taille	Distribution	Dispersion	Divers
RE		Liée au	Liée aux		
TÈI	Liée à la surface	volume de	irrégularités	Trace	Couleur plus foncée et
CRIT	étudiée	sang	de la surface	concentrée	consistance épaisse
		disponible	étudiée		

7. Cheminement

Ensemble de traces passives résultant du déplacement d'une source de sang entre deux points.



(0	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRES	Chaque trace est circulaire	Chaque trace >3mm	Ensemble linéaire	Sans objet	Déformation de chaque trace possible, en fonction de la surface étudiée

8. Chute de volume

Ensemble de traces résultant d'un volume de sang chutant ou se déversant sous l'action majoritaire de la pesanteur.

Ce modèle de trace de sang répond au même mécanisme que la trace passive. Sa spécificité est qu'il ne s'agit pas de la chute d'une seule goutte.

		Forme	Taille	Distribution	Dispersion	Divers
TÈRES	Trace Primaire	Contour altéré	Fonction de la quantité de sang	Centrale	Sans objet	//
CRIT	Trace Secondaire	Ovoïde	< 10 mm	Périphérique	Sans objet	//

9. Coulée

Trace de sang résultant de l'écoulement de sang liquide présent sur la surface étudiée sous l'action principale de la pesanteur.

Ce modèle de trace indique que la quantité de sang sur la surface cible est telle que la pesanteur peut jouer son rôle en attirant vers le sol, en suivant la forme de la surface cible, une partie de cette quantité. Le volume de sang joue un rôle essentiel dans la création d'un ou de plusieurs écoulements et sur leur taille.

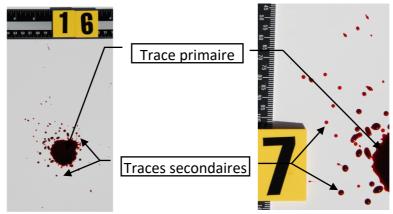
Les mouvements et/ou les changements de position de la surface étudiée sont alors indiqués par des changements de direction des écoulements (ex. : une personne debout puis allongée). Ainsi, sur le corps de la victime, ils sont source d'importants renseignements quant à sa mobilité alors qu'elle est déjà blessée. Source d'information qu'il est difficile de sauvegarder car ces modèles de traces seront altérés lors du transport du corps vers l'Institut Médico-légal puis nettoyées avant l'autopsie.

щ	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRE	Bords réguliers et parallèles	Fonction de la quantité de sang source	Sans objet	Sans objet	Déviation possible en raison du support et/ou des mouvements

10. Foyer de modèle d'impact

Projections circulaires faisant partie d'un modèle d'impact et qui s'observent au niveau de la zone de convergence.

Ce modèle de trace est intrinsèquement lié aux projections par impact. Ces dernières ont toujours une distribution radiale qui converge vers ce foyer.


S	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRE	Circulaire	<3 mm	Concentrique	Sans objet	Projections par impact convergent vers ce centre

11.Goutte à goutte

Ensemble de traces de sang résultant d'un liquide gouttant dans un autre liquide, dont un au moins est du sang.

Cette définition large prend en compte la cause la plus fréquente qui est des gouttes passives chutant toutes au même endroit. Elle décrit alors l'immobilité d'un élément ensanglanté.

A ce jour, aucune description n'indique la forme de la même trace sur une surface inclinée.

		Forme	Taille	Distribution	Dispersion	Divers
TÈRES	Trace Primaire	Contour net	Fonction de la quantité de sang	Centrale	Sans objet	//
CRIT	Trace Secondaire	Circulaire	< 10 mm	Périphérique	Sans objet	//

12.Imprégnation

Accumulation de sang liquide dans une surface poreuse.

S	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRE	Contour régulier mais diffus	Liée au volume de sang présent	Sans objet	Sans objet	Surface étudiée poreuse

13. Modèle d'éjection

Ensemble de projections résultant de l'action de la force centrifuge lors du mouvement d'un élément ensanglanté.

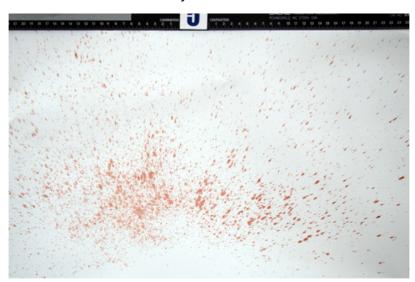
Ce modèle de trace est typique des mécanismes projetants. Il est retrouvé le plus souvent lors de coups portés de préférence avec un objet contondant par définition ou par destination. Sa visualisation demande une observation en 3 dimensions de la scène d'infraction en sachant que certaines des projections le constituant peuvent être très éloignées de la zone de faits mais aussi des autres projections de ce modèle. Elles peuvent se rencontrer sur les vêtements de l'agresseur, essentiellement au niveau du dos et sont, dès lors, très incriminant.

Le simple fait d'agiter un élément ensanglanté crée également des projections par rejet. Les critères de distribution de la projection par rejet proprement dite peuvent être difficiles à repérer mais il s'agit du même mécanisme de création.

Si	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRE	Forme évoluant de circulaire à ovoïde	<3 mm	Linéaire ou axes parallèles	Sans objet	Axes directionnels parallèles

14. Modèle d'impact

Ensemble de projections résultant d'un choc entre un élément et une source de sang liquide.

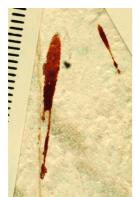

Ce modèle de trace peut être rencontré dans des faits criminels ou non puisqu'il s'applique à toutes les percussions. Il regroupe des actes très diverses puisque nous y retrouvons le fait d'asséner un coup mais aussi le fait de heurter violemment un support et le choc résultant du contact entre la garde du couteau ou la main le tenant lors d'une blessure piquante. Dans le cas d'une blessure balistique, les forces en présence sont telles qu'il n'est pas aisé de repérer un modèle d'impact.

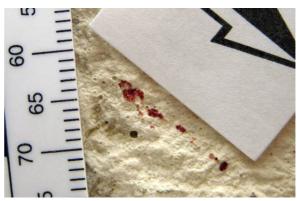
Il est important de noter que dans des faits réels, il est bien rare qu'un unique coup soit suffisant pour créer ce modèle de trace. Lors de l'étude de la distribution de ce modèle de trace, il est important d'avoir une vision en 3 dimensions des lieux et de garder à l'esprit que si la projection ne rencontre pas de surface cible à une distance suffisante, elle retombera vers le sol selon une trajectoire plus ou moins parabolique.

Il est important de préciser également que la projection n'est pas obligatoirement ovoïde. Sa localisation par rapport à la surface cible est déterminante pour connaître sa forme.

La nature du choc, le volume de l'arme employée, la nature de la blessure, sa localisation, la quantité de sang déjà présente sont des facteurs extrêmement influant sur la dispersion de ces traces.

Les critères morphologiques définissant ce modèle d'impact font que sa présence permet de réaliser une étude de trajectoires.




	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRES	Ovoïde à circulaire	<3 mm	Radiale	Dispersion large avec zones d'interruption possibles	Convergence vers un foyer de modèle d'impact possible

15.Projection

Trace de sang résultant de la dispersion de gouttes de sang par l'application d'une force sur une source de sang liquide.

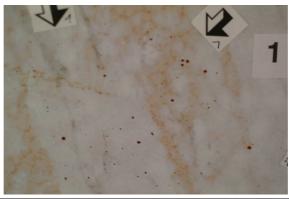
Ce modèle de trace généraliste, identifie toutes les traces et modèles de traces résultant de l'application d'une force externe. Il s'applique à toutes les traces ou modèles de traces ne pouvant être identifiés précisément.

v	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRE		<3 mm	Absence	Sans objet	Altération possible par la surface étudiée

16.Projections positives

Ensemble de projections dont la dispersion se fait dans le sens de la force appliquée. Elles sont le plus souvent associées à un orifice de sortie créé par un projectile d'arme à feu.

Une exception à cette existence est une plaie rasante par arme à feu où l'existence d'une véritable plaie de sortie n'est pas évidente. Comme toutes traces provenant d'un usage d'arme à feu, leur présence et leur quantité sont tributaires du couple arme/munition.

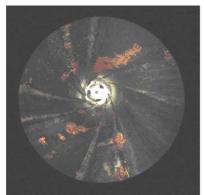


	Forme	Taille	Distribution	Dispersion	Divers
rères	Majoritairement			Dispersion large et en brouillard au	
CRIT	circulaire	<1 mm	Concentrique	voisinage d'un orifice	//
				balistique	

17. Rétro-projections

Ensemble de projections dont la dispersion se fait dans le sens opposé à la force appliquée. Elles sont, le plus souvent, associées à un orifice d'entrée créé par un projectile d'arme à feu.

Leur présence et leur quantité sont tributaires du couple arme/munition. Leur présence n'est pas systématique lors d'un tir par arme à feu.

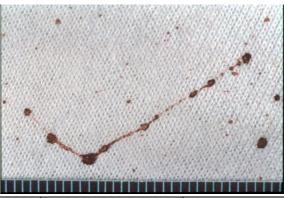


S	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRE	Majoritairement circulaire	<1 mm (~0,1mm)	Dispersée	Dispersion faible	//

18. Sang aspiré

Traces de sang qui se déposent à l'intérieur de l'arme à feu suite à l'appel d'air consécutif à l'expansion des gaz d'explosion.

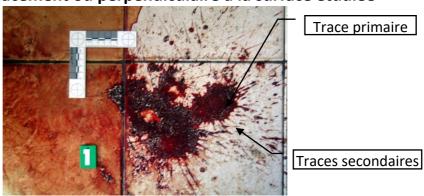
Ce modèle de trace est associé à l'usage d'une arme à feu à bout touchant ou portant. Il résulte de la décharge de gaz accompagnant l'éjection du projectile. Les études menées par MacDonell et Brooks en 1977 ont démontré que la pénétration de ces traces dans le canon pouvait rejoindre le barillet. Ainsi, une étude de l'arme, avant ou avec le balisticien est nécessaire pour les observer. Ensuite, la manipulation de l'arme pour les études balisticiennes mène à leur destruction.


S	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRE	Sans objet	Diverses	Sans objet	Uniquement dans l'arme (surtout le canon)	//

19.Sang expiré

Ensemble de projections résultant de sang propulsé par le flux respiratoire.

Ce modèle de trace peut être identifié sur ses caractéristiques morphologiques mais parfois, la nature du support rend difficile leur observation. C'est pourquoi, il est toujours utile de se renseigner sur l'éventuelle présence de sang dans les voies aériennes supérieures ou d'une blessure aux voies aériennes. Certains emploient un test amylase (présente dans la salive) pour corroborer leur identification.


S	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRE	Circulaire à ovoïde	Très hétérogène	Concentrique	Sans objet	Présence de bulles d'air, de mucus, salive, dilution

20. Sang propulsé

Ensemble de traces résultant de l'éjection de sang sous l'effet de la pression sanguine.

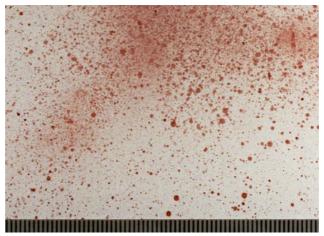
Elle est le plus souvent associée à la pression de la circulation sanguine et même régulièrement limitée à la pression artérielle. Cependant Rex Sparks (IABPA 2006) a démontré, au travers d'un cas concret, qu'une varice percée provoque le même type de modèle de trace.

20.1. Sans déplacement ou perpendiculaire à la surface étudiée

		Forme	Taille	Distribution	Dispersion	Divers
RITÈRES	Trace Primaire	Épineuse	Fonction de la quantité de sang	Centrale	Sans objet	Épines suivent l'axe de chute
CRI	Trace Secondaire	Ovoïde, effilée	<10 mm	Périphérique	Large	Cône suit les épines

20.2. Déplacement parallèle à la surface étudiée

Trace primaire

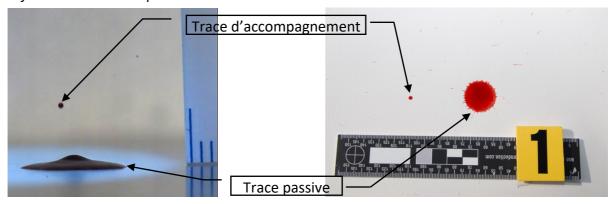

Traces secondaires

		Forme	Taille	Distribution	Dispersion	Divers
CRITÈRES	Trace Primaire	Ovoïde	Fonction de la quantité de sang	Linéaire ou curvilinéaire	Sans objet	Coulées présents
	Trace Secondaire	Ovoïde	<10 mm	Conique	Sans objet	//

21. Sang vaporisé

Ensemble de projections résultant de sang pulvérisé sur la surface étudiée par l'application d'une force.

Ce modèle de trace n'est pas exclusivement lié à l'usage d'une arme à feu même s'il s'y réfère fréquemment. Il désigne des projections à distribution dense. Celles-ci sont la résultante immédiate de la distance entre les surfaces source et cible. Plus elles seront proches l'une de l'autre, plus ce modèle sera visible. Il peut donc de la même façon être absent.


S	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRE	Circulaire	<4 mm	Dense	Sans objet	//

ATIAS

22.Trace d'accompagnement

Trace de sang résultant de la rupture du lien capillaire entre la goutte formant la trace passive et la source de sang.

Elle est la rupture du lien capillaire qui lie la goutte à sa surface origine. Elle suit la goutte et s'inclut le plus souvent dans la trace passive mais elle peut en être disjointe et former une trace à part entière.

S	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRES	Circulaire	~1 mm	Systématiquement voisine d'une trace passive	Sans objet	Peut être confondue avec une projection

23.Trace de sérum

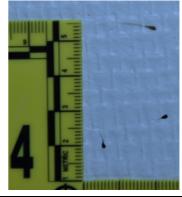
Trace de sang résultant de la séparation du sérum des éléments figurés du sang.

Ce modèle de trace résulte de la formation du caillot sanguin. Il s'agit de la partie liquide du sang débarrassée de ses éléments figurés.

De couleur rouge clair à jaune, ce modèle de trace provoque régulièrement des erreurs d'interprétations des enquêteurs.

Caillot sanguin

Trace de sérum


	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRES	Liée à la surface étudiée	Liée au volume de sang disponible	Liée aux irrégularités de la surface étudiée	Latérale à un caillot sanguin	La faible viscosité du sérum rend facile son déplacement selon les inclinaisons de la surface étudiée

24.Trace d'insecte

Artefacts résultant de l'activité entomologique venant altérer et/ou créer des traces de sang.

Ce modèle de trace résulte de l'activité entomologique sur la scène d'infraction. Les mouches de la première escouade (Calliphora sp.) sont celles jouant le plus grand rôle mais il ne faut pas omettre celui des insectes opportunistes. Les mouches ingèrent du sang sur une surface source et vont le régurgiter en d'autres lieux souvent lumineux devenant alors des surfaces cibles. Leur proximité de forme avec des projections provoque une grande confusion chez les techniciens non formés.

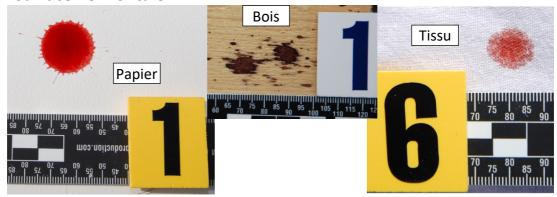
S	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRES	Circulaire	1 à 2 mm	Concentrée	Sur les lieux lumineux	Existence d'une épaisseur en périphérie

25. Projection gravitationnelle

Projection qui atteint la surface étudiée alors qu'elle est en trajectoire descendante, sous l'action principale de la pesanteur.

Ce modèle de trace regroupe toutes les projections n'ayant pas rencontré de surface cible lors de la partie de leur trajectoire due à la force les ayant provoquées. Ayant épuisé toute la vitesse verticale fournie par cette force externe, ces projections subissent majoritairement l'action de la pesanteur. Si leur emploi pour tenter de localiser la zone d'origine est voué à l'échec, la visualisation de leur plan de déplacement reste pertinente.

Ī		Forme	Taille	Distribution	Dispersion	Divers
	TÈRES	0	Large et	Radiale	En périphérie	//
	CRI	Ovoïde	étirée	descendante	d'un modèle d'impact	//


26.Trace passive

Trace de sang résultant de la chute d'une goutte formée sous l'action principale de la pesanteur.

Malgré une origine commune, la trace passive peut avoir des formes variées selon le type de surface cible mais aussi selon l'angle d'impact (chute sur un support horizontal ou non) même si la forme circulaire est la plus souvent associée à ce modèle. Son diamètre (trace circulaire) est fonction du volume de la goutte et de sa hauteur de chute. La rugosité de la surface cible est un facteur essentiel de modification de la forme de trace. A cette rugosité s'ajoute un phénomène d'imprégnation lorsque le support est poreux comme un tissu. L'angle d'impact est un facteur qui peut perturber l'analyste même si ces conséquences ne sont bien observables que pour des angles inférieurs à 60°. Bien que bien connu, l'angle d'impact est le plus souvent associé aux projections par impact et son effet sur les traces passives est souvent occulté.

Ces facteurs font de la trace passive, un modèle de trace de sang bien plus complexe qu'il n'y paraît. Étant, de loin le modèle le plus fréquemment rencontré sur une scène d'infraction sanglante, il demande une attention toute particulière.

26.1. Surface horizontale

S	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRES	Circulaire	>3 mm	Sans objet	Sans objet	Déformation liée à la surface étudiée

26.2. Surface non horizontale

ES .	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRE	Ovoïde	>3 mm	Sans objet	Sans objet	Déformation liée à la surface étudiée

27. Transfert par contact

Trace de sang résultant de l'apposition d'un élément ensanglanté sur la surface étudiée.

Ce modèle de trace de sang désigne le contact d'un élément couvert de sang humide avec la surface cible non encore souillées. Des caractéristiques morphologiques de la surface source peuvent être alors identifiées.

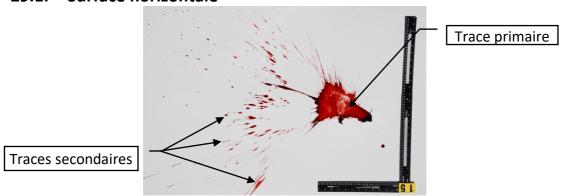
Si	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRES	Non naturelle	Fonction de la source	Sans objet	Sans objet	//

28. Transfert glissé

Trace de sang résultant du mouvement d'un élément ensanglanté en contact avec la surface étudiée. Certains des critères morphologiques visibles peuvent permettre d'orienter ce mouvement.

Ce modèle de trace de sang désigne le contact en mouvement d'un élément couvert de sang humide avec la surface cible non encore souillée. Il est alors possible de déterminer le sens de déplacement et de donner des caractéristiques morphologiques de la surface source.

S	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRES	Contour irrégulier, Striation interne	Fonction de la source	Sans objet	Sans objet	Répartition hétérogène du sang montrant le sens du mouvement


29. Volume impacté

Ensemble de traces de sang résultant de l'impact d'un élément dans du sang liquide sur la surface étudiée.

Ce modèle de trace résulte d'une percussion dans du sang liquide. Il s'agit plutôt d'un impact mineur car un impact violent provoquera un modèle d'impact. Un lien fort existe donc entre cet impact mineur et la trace source. Il est indispensable que la quantité de sang de la trace source soit supérieure à une goutte (certains auteurs précisent supérieure à 1 ml). Ce modèle de trace est souvent confondu avec les volumes et certaines traces propulsées.

Ce modèle de trace se retrouve aussi sur le bas des vêtements et les chaussures de personnes ayant marché dans du sang.

29.1. Surface horizontale

		Forme	Taille	Distribution	Dispersion	Divers
CRITÈRES	Trace Primaire	Contour épineux	Fonction de la quantité de sang	Centrale	Sans objet	Possible présence d'une altération interne
CR	Trace Secondaire	Ovoïde à circulaire	<10 mm	Axiale	Suivent les épines	//

29.2. Surface non horizontale

S	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRES	Circulaire à ovoïde	Hétérogène	En V ou en double conique	Proche d'une surface horizontale	Il s'agit des traces secondaires

30.Zone d'interruption

Espace non ensanglanté au sein d'un modèle et/ou d'un ensemble continu de traces de sang.

Ce modèle de trace est une forme d'altération où l'absence de trace au sein d'une zone ensanglantée devient une trace à part entière. Il indique qu'un élément (objet ou personne) se trouvait là au moment de la création du modèle de trace premier. Ce vide peut montrer le contour complet de l'élément en cause ou juste nous montrer une interruption dans la distribution des traces.

Ce modèle de trace est souvent utile pour déduire la position de l'assaillant.

S	Forme	Taille	Distribution	Dispersion	Divers
CRITÈRE	Liée aux surfaces source et étudiée	Liée à la source	Au sein d'une zone ensanglantée	Sans objet	//